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Synopsis 

We have developed an analytical solution of reversible step growth polymerization in semibatch 
reactor with condensation product flashing. We have shown that the MWD of the polymer formed 
has Flory distribution, unaffected by flashing of condensation product, if the feed to the reactor is 
either pure monomer or has most probable MWD. We have determined analytical expression for 
the time when the evaporation of condensation product starts. Assuming the vapor liquid equilibrium 
(VLE) is given by Raoult's law (as well as the FIory-Huggins relation) we have determined the 
number and weight average chain lengths. We have subsequently analyzed the polycondensation 
step of the formation of polyethylene terephthalate and determined the effect of temperature and 
pressure on the course of polymerization. 

INTRODUCTION 

Polymerization can occur either by chain growth or by step growth mecha- 
n i ~ m . ' - ~  In the latter there are reacting functional groups on polymer molecules 
which lead to their chain growth on chemical reaction. If the functionality of 
the starting monomer is 2, the polymer formed has a linear structure because 
of the following reasons. All molecules in the reaction mass, whether monomer 
or polymer, have two unreacted functional groups situated at chain ends. This 
implies that the growth of molecules can occur only in one direction, thus giving 
linear molecular structure. 

In this paper we consider the analysis of step growth polymerization of bi- 
functional ARB monomer, where A and B are the reacting functional groups. 
Like all other reactions in nature, this is also reversible and can be schematically 
represented as*-'' 

P, + P, * P,,, + w (1) 

In this P, represents polymer chain having m repeat units and W, the con- 
densation product formed in the chemical reaction of functional groups A and 
B. Above k,,n and k',,, are the forward and the reverse rate constants respec- 
tively and their subscripts ( m ,  n and m + n )  denote that they are dependent 
upon the chain lengths of the reacting species. Since the forward reaction in- 
volves macromolecules P, and P,, k,,, depends on both n and n while the 
reverse reaction depends upon ( m  + n )  . 
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In the celebrated work, based on the experimental work of Bhide and Sud- 
borough, l1 Flory proposed equal reactivity hypothesis 12,13 in which the forward 
and reverse rate constants, k,,,n and kL,, were assumed to be independent of 
m and n. Recently experimental  work^'^,'^ have been reported where it has 
been shown that this is a gross simplification. Under &conditions, the rate 
constant versus chain length n has an S-shaped dependence. In the literature 
this has been modeled by the unequal reactivity of m~nomer. '~- '~  

Step growth polymerization is either carried out batchwise in a vessel or 
continuously in suitable continuous  reactor^.'.^.^ The latter have either the ge- 
ometry of a stirred vessel (modeled as continuous flow stirred tank reactor) or 
a long tube (modeled as plug flow reactors) through which the reacting fluid 
is continuously pumped. The main goal of these reactors is to form polymer of 
high molecular weight, which means that the polymerization must be carried 
out to high conversion. However, due to reversibility of eq. ( I ) ,  overall poly- 
merization is limited by equilibrium, which means that a high vacuum must be 
applied to the reactor to remove condensation product W in order to obtain 
the desired p ~ l y m e r . ~ ' - ~ ~  Reactors from which the condensation product is con- 
tinuously flashing are called semibatch reactors. In this study, we undertake 
an analysis of them because of their industrial importance. 

The original analysis of Flory for step growth polymerization assumed equal 
reactivity hypothesis. Using statistical arguments he solved the molecular weight 
distribution (MWD) of polymer formed in batch reactors (i-e., reactors in which 
there is no flashing of W )  . There have been several analyses of MWD of polymer 
in industrial reactors, but most of these assume polymerization to be irreversible 
in order to simplify the mathematical analysis.26-31 A kinetic approach has been 
taken and for a given reactor mole balance relations for various oligomeric 
species have been written. A 2-transform or a Laplace transform function is 
defined and the infinite mole balance equations are combined into a single one 
using this. In this way, an analytical solution of the MWD of the polymer has 
been found. Abraham3' has addressed the problem of reversible step growth 
polymerization in semibatch reactors. Assuming monomer as feed, no change 
in density of the reaction mass, and the vapor-liquid equilibrium given by 
Raoult's law from the beginning of polymerization, he assumes the Flory- 
Schultz distribution for the MWD of the polymer. He defines a Flory-Schultz 
parameter, which he solves numerically. It may be recognized that flashing in 
an industrial reactor starts after some time of polymerization and it is desirable 
to know this time a priori. 

When vacuum is applied to a semibatch reactor, the condensation product 
begins to boil out of the reaction mass. The modeling of flashing of W from 
semibatch reactors has been attempted in the l i t e ra t~re .~ ' -~~ In these analyses, 
the diffusional resistance of the reaction is assumed to be zero. In addition, the 
escaping vapor is assumed to be in thermodynamic equilibrium with the reaction 
mass. This leads to mole balance relations as a set of differential equations, 
while thermodynamic equilibrium as an algebraic inequality. These could he 
solved numerically only and have been described in the literature in complete 
detail. 

Computer calculations of the MWD of ARB polymerization have been found 
to be difficult and time consuming. This is because the set of nonlinear ordinary 
differential equations governing it are coupled and must be solved simulta- 
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neously. We arbitrarily choose a large number of equations (say N,) such that 
the concentration of PN, oligomer is negligibly small. We keep increasing N, 
whenever the concentration of P, increases beyond some minimum value (say 
lo-'). In our earlier work we have found that N,  increases very sharply with 
conversion and, as a result, computations slow down considerably and the trun- 
cation error begins to build up with increasing time of polymerization. One of 
the ways to overcome this computational problem is to derive moment gener- 
ation relations from the MWD  equation^.^^^^^ On doing this, it is found that 
the relation for the ith moment of MWD involves higher moments and these 
can be found only after suitable moment closure approximation. 

In this paper we present an analysis of the general problem reversible step 
growth polymerization in semibatch reactor. We have recognized the change 
in volume of the reaction mass due to flashing and polymerization. We then 
modeled the flashing of the condensation product and developed a complete 
analytical solution of the MWD and moments of the polymer formed. We have 
shown that no matter what the history of polymerization, at equilibrium, the 
formed polymer has most probable distribution. We recognize that the flashing 
of the condensation product starts after certain time of polymerization and 
this depends upon the reactor pressure. We have found this time analytically 
as a function of reactor temperature and pressure and subsequently derived an 
analytical expression for the moles of condensation product flashed and the 
average chain length of the polymer formed. We also show that if the feed to  
the semibatch reactor is either pure monomer or oligomers having Flory's dis- 
tribution, the flashing of the condensation product does not change the distri- 
bution. We subsequently solved the problem of polymerization of polyethylene 
terephthalate and compared our results with those avaiIable in the literature. 

THEORY 

A schematic diagram of a semibatch reactor carrying out reversible step 
growth polymerization is shown in Figure 1. Depending upon the volatility of 
components of the reaction mass, there is a flashing of the vapor stream shown 
in the figure. In the analysis presented in this work, we assume only monomer 
P1 and condensation product W vaporize and are present in the vapor phase 
at concentrations governed by vapor-liquid equilibrium. This assumption is 
made here to keep the analysis simple but can be easily extended for cases 
where higher oligomers also vaporize. 

In all semibatch reactors, monomer in the vapor phase is condensed in a 
suitable separator and recycled because of its high costs. It is assumed that the 
reactor is operating isothermally with its total pressure as PT. The volume of 
the liquid phase of the reactor, V,  changes with time as flashing of W and P1 
occurs, and we account for its time dependence in this analysis as follows. We 
define p n  as the total moles of species P,, ( n  = 1, 2,  . . .) and w as moles of W 
in the liquid phase. The mole balance relations of these on the control volume 
shown in Figure 1 are given by 
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Fig. 1. Schematic diagram of a semibatch reactor with monomer and condensation product 
evaporating. S = separator; W = condensation product; PI = monomer; PT = reactor pressure; Qu 
= instantaneous rate of evaporation of W ;  V = volume of reaction mass in the liquid phase; p , ,  10, 

L, = no. of moles of monomer PI, condensation product W and the polymer respectively in the 
reaction mass. 

where kf and kr are the forward and reverse rate constants (assuming equal 
reactivity hypothesis) and Xo and XI, are the zeroth and first moments which 
are defined as 

Q, w 

Xo = C p n ,  X I  = 2 npn 
n=l rl= 1 

The zeroth moment Xo gives the total moles of polymer at  any time whereas 
A1 the total count of repeat units which will be shown to be time invariant a 
little later on. Let us assume that the feed to the semibatch reactor is pure 
monomer, i.e., 

a t  t = 0: p 1  = p l o ,  p n  = 0 f o r n 2  2 ( 4 )  

In order to solve for the molecular weight distribution (MWD ) of the polymer, 
we must know the volume V of the liquid phase of the reactor and the rate of 
vaporization, Qw. The volume V is given by 
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where vw is the molar volume of the condensation product W. Subsequently, 
we assume vapor liquid equilibrium given by the Raoult's law as 

Equations (2) ,  (5), and ( 6 )  specify the MWD of the polymer formed and must 
be solved simultaneously for the analytical solution that follows. 

Equations (2a) and (2b) are suitably added to determine the generation 
relation of the zeroth moment Xo and first moment X 1  as 

Equation [ 7 ( b )  ] implies that the first moment XI is time invariant. Equations 
[ 7 ( a ) ]  and [2(c) ]  give 

which on substitution in eq. (5) yields 

Herein, wo is the moles of condensation product in the liquid phase having 
total volume Vo at time t = 0. 

We propose the MWD of the polymer to be of the same form as the Flory 
distribution 

where x ( t )  and y (  t )  are independent of the chain length n. On direct substi- 
tution of eq. ( 10) in eqs. [ 2 (a)  ] and [ 2 ( b )  1 it is seen that it satisfies the mole 
balance relation no matter what the concentration of W is. If the starting feed 
is either pure monomer or has its MWD governed by a relation similar to eq. 
( l o ) ,  then the form of' MWD remains unaffected by flashing. The x (  t )  and 
y (  t )  in eq. (10) however are not independent because of the invariance of X1, 
01, 
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These give 

Y ( t )  = 1 - (Ao/P1o)  

x ( t )  = (X;/Plo) 

We rewrite the vapor liquid equilibrium in eq. (6)  as 

However, eq. (10) givesp, as x (  t )  or XE/plo [see eq. ( 12) 1 ,  which on substituting 
in the above relation gives 

Between eqs. (9)  and ( 14), it is thus possible to obtain an explicit relation 
between V and P as 

where 

b2 = uwa2 (15d) 

We can now substitute eq. (14 )  for w and eq. (15)  for V in eq. [ 7 (a ) ]  to 
obtain 

This can be integrated with the initial condition that a t  t = 0 Xlo is the same 
as plo and the final result can be derived as 
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When monomer P1 has very low volatility and only water flashes, 

Equation (16) then becomes 

which can be integrated to 

where 

CLOSED REACTORS 

When the condensation product is not allowed to escape from the reactor, 
Qw in eq. [ 2 ( c )  ] is zero and according to eq. ( 5 ) ,  the volume of the liquid phase 
of the reactor is time invariant. It is now possible to write the mole balance 
relations in concentrations of oligomers as follows 
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(23a) -- dC1 - -2k,C,$ + Zk,Cw(A,* - C , )  

-- dCW - kfX,*'-  k,Cw(A: - A t )  

d t  
n-1 00 

= -2kfCnA,* + kf C CrC,-, + 2krCw 2 Cr - k,C,(n - l ) C n  (23b) dC, 
r = l  r=n+l d t  

( 23c ) dt  

where C,  (for n = 1, 2, . . .) represent concentration of species P, and 
A,* and A: zeroth and first moments in terms of concentration unit defined as 

A,* = c c, 

A: = 2 nCn 

n= 1 

n=l  

The feed to the batch reactor is once again to be pure monomer, in which case 

at  t = 0 C, = Clo 

C,=O n 2 2  

We proceed similarly to propose the form of MWD as 

which satisfies the MWD relations in eq. (23) and the initial conditions in eq. 
(25).  Since the distribution has time invariant first moment A: ( = Clo) and the 
zeroth moment A,*, xc and y e  in eq. (26) can be written in terms of them as 

The generation relation for the zeroth moment, A,*, can be derived from eq. 
(23) as 

For closed reactors, Qw = 0, consequently eq. (8) yields 

where Cwo is the concentration of the condensation product W in the 'feed 
which need not he zero. On eliminating C w  in eq. (28), one has 
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dA,* 
dt 
-- - -kf + kr( c w o  + ClO - A,* ) ( ClO - A,* ) 

This can be easily integrated to get A,* as 

where 

2m2h; + ml - 6 
= 2m2~,* + ml + 6 

2m2Clo + ml - 6 
2m2Clo + ml + 6 Qo = 

EQUILIBRIUM POLYMERIZATION 

Let us assume that the concentration of oligomer P, at equilibrium in the 
reaction mass is Cne. If Cw, is the concentration of the condensation product 
at equilibrium, eq. ( 2 3 )  is written as 

The form of the MWD remains to be the same as eq. (26) as 

where x,, and ycp are parameters defined for the equilibrium and 

If eq. ( 34)  is substituted in eq. ( 3 3 ) ,  we find that in order to satisfy i t  exactly, 
one must have 
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xce = PCweYce 

This specifies the entire MWD of the polymer. 

RESULTS AND DISCUSSION 

Let us consider that certain moles of a monomer (say plo)  are mixed with 
some moles (say wg) of condensation product before the mixture is charged to 
the reactor. As long as the constraint of vapor-liquid equilibrium [given in eq. 
(6) ]  is not satisfied, there is no flashing of W and PI and it behaves like a 
closed reactor. During polymerization w increases and A,, goes down and there 
is a time when the condensation product begins to evaporate. The time when 
this occurs can be easily determined by first finding the intersection point of 
eq. (6)  and (29). When there is no flashing, according to eq. (5) ,  the volume 
of the reaction mass is constant and as a consequence eq. (29) can be rewritten 
as 

Depending on whether monomer is flashing or not, we have 2 situations. When 
only W is evaporating, eq. (19) holds for thermodynamic equilibrium and the 
intersection point is given by 

In this, superscript c 1 stands for this situation (called case 1 ) . This is now 
substituted either in eq. ( 21 ) or (31 ) . When PI as well as W evaporate (called 
case 2) ,  eq. (37)  is used to eliminate w from eq. (13) and Ag2 for this situation 
is determined from 

This is once again substituted in eq. (17) to get the time of transition. 
In order to demonstrate the efficiency of solution developed in this paper, 

we have reexamined the analysis semibatch reactor given in Ref. 33. For specified 
final stage, the time of transition, t,,, is first determined by using eq. (38) [or 
eq. (39) ] and eqs. (31) [or eq. ( 17) 1 and after that, the time of polymerization. 
We have compared our results with those found numerically using the technique 
of Ref. 33. We have found exactly the same result and our method has the 
advantage of being simple and can be adapted on any programmable calculator. 
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In the following, we now examine the sensitivity of design of the semibatch 
reactor to various reaction parameters. 

Theoretically, the time of transition, tt,, is expected to depend upon the 
reactor pressure and p. We have varied p from 0.1 to 3 and have found that it 
is relatively insensitive to it. However, reactor pressure has profound effect on 
tt, as seen in Figure 2. As the reactor pressure is reduced, the transition time 
falls almost linearly. We have shown tt, for the case when PI and W both flash 
in this figure by dotted line and find that for a given reactor pressure it is lower 
for this case. This is observed because of the additional term due to the monomer 
concentration in the vapor-liquid equilibrium relation eq. (6) .  

From the knowledge of Xo in the reaction mass, it is possible to compute 
number average chain length pn defined as 

P n  = X I / X O  (40) 

Since the molecular weight distribution (MWD) is given by the Flory’s relation 
in eq. ( l o ) ,  the polydispersity index, PDI, is equal to 

where 

P(otm) 
Fig. 2. Time of start of evaporation versus reacLor pressure for case 1 and case 2. 
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Above P F G  represents the conversion of functional groups. Evidently the max- 
imum value of PFG is unity which means that PDI is limited to a maximum 
value of 2, as expected. The p,, versus time of polymerization in semibatch 
reactor has been plotted in Figure 3. It is found to rise quickly for short times, 
but for longer time spans, it is limited by the equilibrium. In this figure the 
effect of p has been examined and it is found that as /3 is increased, the asymp- 
totic value of pn falls. This is because smaller conversions are attained for larger 
/3 leading to smaller p,,. 

The instantaneous evaporation of the condensation product, Qw can be easily 
derived from eq. (5) 

where d V / d t  is found from eq. ( 15) as 

In Figure 4, instantaneous Qw has been evaluated as a function of time. It 
is found to be very large for short times which progressively reduces in mag- 

100 I- 

1 L 1 

OJ m 10.0 
Time 

Fig. 3. Average chain length fin versus time of polymerization with f l  as parameter at PT = 5.0 
atm for case 1. 
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1001 

Fig. 4. Rate of evaporation Q, versus time of polymerization for different reactor pressure for 
case 2. 

nitude. Evidently a t  the reaction equilibrium, polymerization stops and Qw is 
zero. In this figure we have examined the effect of reducing reactor pressure. 
We find that flashing starts earlier and the initial value of Qw is higher. Also 
the case of only W flashing shows an earlier transition and a higher peak of 
Qw than the case when both P, and W flash. 

The development presented in the text of this paper assumes Raoult’s law 
for the vapor liquid equilibrium. It is well known that a more realistic repre- 
sentation of this for polymer solution is the Flow-Huggins relation. The dif- 
ference between the two theories lies in the fact that there is an empirical 
parameter X characterizing the polymer solvent system. For this case, the 
scheme of the solution remains unchanged and results are given in the Appendix. 
In Figure 5, we have treated x as a parameter and plotted pn versus time of 
polymerization. For given f i ,  as x is increased, the moles of condensation product 
Win the reaction mass decreases, which increases the average chain length of 
the polymer. 

Lastly we have undertaken an analysis of the formation of polyethylene 
terephthalate (PET) from bishydroxyethyl terephthalate ( BHET) in semibatch 
reactors. If the formation of side products is neglected, the polymerization 
mechanism can be written as in eq. ( 1 ) . For this system, the value of parameter 
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Fig. 5. Effect of X on average chain length versus time of polymerization at /3 = 0.1, PT = 5.0. 

p is 2 and is independent of temperature. The effect of varying reaction tem- 
perature, T ,  alters the vapor pressure of the condensation product W. The 
results have been summarized in Figure 6. As T is increased, vapor pressure of 
ethylene glycol increases, as a result of which the time of flashing and the value 
of W decreases which leads to higher pn. 

CONCLUSIONS 

We have developed an analytical solution for reversible step growth poly- 
merization carried out in semibatch reactors. It has been assumed that polymer 
evaporates along with condensation product. Analytical expression for the time 
when flashing starts has been obtained employing both the idealized Ftaoult's 
law as well as the more realistic Flory-Huggin's relation for the vapor liquid 
equilibrium. Expression for the MWD of the polymer formed has been obtained, 
and i t  has been shown that this remains unaffected by evaporation if the feed 
to the reactor is either a pure monomer or it is the product from a preceding 
batch reactor. Transcendental relationship between the polymer concentration 
and time of polymerization has been derived. The results match perfectly with 
those obtained by numerical schemes presented in the previous literature. A 
sensitivity analysis with respect to kinetic parameter j3 and reactor operating 
conditions has been carried out. Subsequently, we have analyzed the industrial 
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Fig. 6. Effect of reactor temperature on average chain length versus time of polymerization 
for PET formation a t  PT = 66 mm Hg, p = 2.0. 

exampIe of PET formation in a semibatch reactor and have examined the effect 
of temperature and pressure. 

APPENDIX: SEMIBATCH REACTOR ANALYSIS USING 
THE FLORY-HUGGINS RELATION 

The vapor-liquid equilibrium relation for monomer P, and condensation product W flashing 
is given by 

where PT is the total pressure in the reactor, V is the volume of reaction mass, P;,, and P& are 
vapor pressures, up, and uw are specific molar volumes of PI and W, respectively, and X is the Flory- 
Huggins parameter. 
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Approach similar to that employed for Result’s law vapor liquid equilibrium is adopted here to 
determine w and V in terms of ho alone. Rewriting eq. (44) for w we get 

Substituting this relation in eq. (9 ) ,  we get a quadratic expression for V, analogous to eq. ( 15) 

where 

Substituting eq. 46( a )  back in eq. (45) we get a quadratic expression for w ,  analogous to eq. ( 14) 

where 

and 

C W =  lPTexpl-(1 + X) lbw + ~ ~ , P ~ , / ~ i o l / ( ~ w ~ P & )  (47d) 

Substituting eq. (46a) for Vand eq. (47a) for w in the rate expression [ eq. (7a ) l  for A,, one obtains 

(boF f blFXo - b,Fhi)db/d t  = doF - d1Fho - dwhi f d3pG ( 48a ) 

where 

Equation (48) can also be used for the case when only condensation product flashes, then the 
terms accounting for f$, , the vapor pressure of monomer P I ,  have to be discounted, that  is, 

bw = C ~ F  = dSF = 0 (49) 

Integrating ey. (48a) for the simpler case of only condensation product flashing, taking account 
of eq. (50), one ohtains 
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(50) 

For the other case, when both PI and W are flashing the roots of the cubic expression on the right 
hand-side of eq. (51a) can be obtained and hence a similar approach is adopted for obtaining time 
versus A,,. 

The transition from closed reactor operation to semibatch reactor operation ( i.e., when flashing 
starts) is obtained by substituting 

w = wo + AM) - A0 

v = vo 
P1= A3PIO 

in eq. (44) ,  giving a quadratic in AO 

where 

The transition A. is the feasible root of this quadratic equation 

( 53a ) 

The transition time corresponding to this value of A. is obtained by substituting A,,,  in eq. (SO). 

References 

1. S. K. Gupta and A. Kumar, Reaction Engineering of Step Growth folymeriration, Plenum, 

2 .  J. A. Bisengerger and D. H. Sebastian, Principles of Polymer Reaction Engineering, 1st ed., 

3. C .  Odian, Principles of Polymerization, 2nd ed., Wiley, New York, 1981. 
4. J. L. Throne, Plastics Process Engineering, 1st ed., MarceI Dekker, New York, 1979. 
5. A. Kumar and S .  K. Gupta, Fundamentals of Polymer Science nnd Engineering, 1st ed.. 

6.  D. H. Solomon (ed.), Step Growth Pol.ymerization, Dekker, New York, 1978. 
7. P. J. Flory, Principles of Polymer Chemistry, 1st ed., Cornell University Press, Ithaca, New 

New York, 1987. 

Wiley, New York, 1983. 

Tata McGraw-Hill, New Delhi, 1978. 

York. 1953. 



2094 KUMAR AND KHANNA 

8. W. H. Ray, J.  Macromol. Sci. Reu. Macromol. Chem., C 8, 1 (1972). 
9. W. H. Ray and R. L. Laurence, Chemical Reactor Theory, L. Lapidus and N. R. Amundson, 

Eds., 1st ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1977. 
10. S. K. Gupta and A. Kumar, Chem. Eng. Commun., 20,l (1983). 
11. Bhide and Sudborough, J.  Indian Irzst. Sci., 8 A ,  89 (1926). 
12. P. J. Flory, J.  Am. Chem. SOC., 61, 3334 (1939). 
13. P. J. Flory, J.  Am. Chem. SOC., 62, 2261 (1940). 
14. S. I. Kuchanov, M. L. Keshtov, P. G. Halatur, V. A. Vasnev, S. V. Vinogradova, and V. V. 

15. R. Goel, S. K. Gupta, and A. Kumar, Polymer, 18,851 (1977). 
16. S. K. Gupta, A. Kumar, and A. Bhargava, Eur. Polym. J.. 15,557 (1979). 
17. S. K. Gupta, A. Kumar, and A. Bhargava, Polymer, 20,305 (1979). 
18. S. K. Gupta, A. Kumar, and R. Saraf, J. Appl. Polym. Sci., 25, 1049 (1980). 
19. A. Kumar, S. K. Gupta, and R. Saraf, Polymer, 21, 1323 (1980). 
20. A. Kumar, P. Rajora, N. L. Agarwalla, and S. K. Gupta, Polymer, 23,222 ( 1982). 
21. S. K. Gupta, N. L. Agarwalla, P. Rajora, and A. Kumar, J. Polym. Sci. Potym. Phys. Ed., 

22. A. Kurnar, Macromolecules, 20, 220 (1987). 
23. A. Kumar, J. Appl. Polym. Sci., 34,571 ( 1987). 
24. A. Kumar, Polym. Eng. Sci., to appear. 
25. A. Khanna and A. Kumar, Macromolecules, 22,866 (1989). 
26. H. Kilkson, Ind. Eng. Chem. Fundam., 3,281 (1964). 
27. H. Kilkson, Ind. Eng. Chem. Fundam., 7,354 (1968). 
28. N. H. Smith and G. A. Sather, Chem. Eng. Sci., 20,15 (1965). 
29. W. H. Abraham, Chem. Eng. Sci., 2 1 ,  327 (1966). 
30. W. H. Abraham, Chem. Eng. Sci., 28, 331 (1970). 
31. J. A. Biesenberger, AIChE J., 11, 369 (1965). 
32. K. Ravindranath and R. A. Mashelkar, J. Appl. Sci., 26,3179 (1981). 
33. S. K. Gupta, D. Mohan, and A. Kumar, J. Appl. Polym. Sci., 30,445 (1985). 
34. D. A. Mellichamp, Chem. Eng. Sci., 24, 125 (1969). 
35. J. W. Ault and D. A. Mellichamp, Chem. Eng. Sci., 27, 2219 (1972). 
36. A. Khanna and A. Kumar, J.  Appl. Polym. Sci., 37,3205 (1989). 

Korshak, Makromol. Chem., 184,  105 (1983). 

20,933 ( 1982). 

Accepted December 13, 1989 




